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Abstract

A four-parameter fit is developed for the class of integrals known as the exponential integral
(real branch). Unlike other fits that are piecewise in nature, the current fit to the exponential
integral is valid over the complete domain of the function (compact) and is everywhere accurate
to within +0.0052% when evaluating the first exponential integral, E;. To achieve this result,
a methodology that makes use of analytically known limiting behaviors at either extreme of the
domain is employed. Because the fit accurately captures limiting behaviors of the E, function,
more accuracy is retained when the fit is used as part of the scheme to evaluate higher-order
exponential integrals, E,, as compared with the use of brute-force fits to E;, which fail to
accurately model limiting behaviors. Furthermore, because the fit is compact, no special
accommodations are required (as in the case of spliced piecewise fits) to smooth the value, slope,
and higher derivatives in the transition region between two piecewise domains. The general
methodology employed to develop this fit is outlined, since it may be used for other problems
as well.
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1. Introduction

A number of useful integrals exist for which no exact solutions have been found. In other
cases, an exact solution, if found, may be impractical to utilize over the complete domain of the
function because of precision limitations associated with what usually ends up as a series solution
to the challenging integral. For many of these integrals, tabulated values may be published in
various mathematical handbooks and articles. In some handbooks, fits (usually piecewise) also
are offered. In some cases, an application may be forced to resort to numerical integration in
order to acquire the integrated function. In this context, compact (i.e., not piecewise) analytical
fits to some of these problematic integrals, accurate to within a small fraction of the numerically
integrated value, serve as a useful tool to applications requiring the results of the integration,
especially when the integration is required numerous times throughout the course of the
application. Furthermore, the ability and methodology to develop intelligent fits, in contrast to
the more traditional ‘‘brute force’’ fits, provide the means to minimize parameters and maximize
accuracy when tackling some of these difficult functions. The exponential integral will be used
as an opportunity to both demonstrate a methodology for intelligent fitting as well as for

providing an accurate, compact, analytical fit to the exponential integral.

The exponential integral is a useful class of functions that arise in a variety of
applications, including the theory of interatomic energy potentials [1], the theory of lethal areas
for fragmenting warheads [2], and the theory of ballistic penetration [3], to name but a few. The

real branch of the family of exponential integrals may be defined by

E(x) = jj_ ar )

where n, a positive integer, denotes the specific member of the exponential-integral family. The

argument of the exponential integral, rather than expressing a lower limit of integration as in




eqn (1), may be thought of as describing the exponential decay constant, as given in this

equivalent (and perhaps more popular) definition of the integral:

ar . ()

Integration by parts permits any member of the exponential-integral family to be

converted to an adjacent member of the family, by way of

“ it 3 -X - -t
Je g = L€ -Je dr| 3)
v tn+l n xn p zn
expressable in terms of E, as
T
E,.® = ~[e* -xE®] ®@=1,23.) . 4
n

Through recursive employment of eqn (4), all the members of the exponential integral family may
be analytically related. However, this technique only allows for the transformation of one
integral into another. There remains the problem of evaluating E,(x). There is an exact solution
to the integral of (e™/¢), appearing in a number of mathematical references [4, 5], which is
obtainable by expanding the exponential into a power series and integrating term by term. That

exact solution, which is convergent, may be used to specify E,(x) as

2 3

o x _oxt X
E (x) Y. ln(x)+T!_ 33T 331 . &)




Euler’s constant, vy, equal to 0.57721..., arises in eqn (5) when the power-series expansion for

(e™/1) is integrated and evaluated at its upper limit, as x — oo [6].

Employing eqn (5), however, to evaluate E,(x) is problematic for finite x significantly
larger than unity. One might well ask of the need to evaluate the exponential integral for large
x, since the function to be integrated drops off so rapidly that the integral is surely a very flat
function. Such reasoning is true when comparing the integrand at large x to that at small x.
However, the definition of eqn (1) has as its upper limit not a small value of x, but rather that
of . Therefore, the actual values for E,(x) are extremely small numbers for large values of x.
Thus, it is not sufficient merely to select enough terms of eqn (5) to evaluate the integral to
within a value of, for example, £0.0001 because the actual integral value for large x would be
smaller than this arbitrary tolerance. To draw an analogy, it would be like saying that it is good
enough to approximate ¢ as 0.0 for x> 10, since its actual value is within 0.0001 of zero. For
some applications, such an approximation may be warranted. In general, though, such an
approximation is mathematically.unacceptable. Worse yet, as seen from eqns (1) and (2), the
need to evaluate the exponential integral for large arguments can arise in real-world problems
from either a large integration limit or a large value of an exponential decay constant. Thus, the
need to evaluate exponential integrals for large values of the argument is established. It is here

that the practical problems with the evaluation of eqn (5) become manifest.

First, the number of terms, N, required to achieve convergence rises rapidly with
increasing x, making the summation an inefficient tool, even when expressed as a reéursion
relation (for three digits of accuracy, N is observed to vary roughly as 9+ 1.6x, for 1 <x<7).
More important, however, is the fact that, for calculations of finite precision, the accuracy of the
complete summation will be governed by the individual term of greatest magnitude. The source
of the problem is that as x is increased, the total summation decreases in magnitude more rapidly
than a decaying exponential, while at the same time, the largest individual term in the series is
observed to grow rapidly with increasing x (~10' for x=7, ~10* for x= 10, ~10° for x =13, etc.).
The magnitude of this largest individual term consumes the available precision and, as a result,

leaves little or none left for the ever-diminishing net sum that constitutes the desired integral.




Literally, the use of eqn (5), even with (32-bit) double precision, does not permit the
exponential integral to be evaluated to three places for x> 14 in any case, and with the situation
worsening for lesser precision. For these reasons, the use of eqn (5) to evaluate the exponential

integral numerically for large x is wholly unsuitable.

Others have obviously recognized this problem, as the exponential integral in some

handbooks [5] receives a whole chapter of attention. For large x, a continued fraction exists that

converges to the integral, given by

E(x) = e - ! . ©)

But as x becomes smaller, the number of terms required for convergence rises quickly. Similar
arguments apply for the use of an asymptotic expansion for E;, which also converges for large
x. As such, the more typical approach employed by handbooks is that of a fit. While some steps

are taken to make the fits intelligent (e.g., transformation of variables), the fits are all piecewise

over the domain of the integral.

Cody and Thatcher [7] have performed what is perhaps the definitive work, with the use
of Chebyshev approximations to the exponential integral E,. Like others, they fit the integral
over a piecewise series of subdomains (three in their case) and provide the fitting parameters
necessary to evaluate the function to various required precisions, down to relative errors of 107,
One of the problems with piecewise fitting over two or more subdomains is that functional value
and derivatives of the spliced fits will not, in general, match at the domain transition point, unless
special accomodations are made. This sort of discontinuity in functional value and/or slope,
curvature, efc., may cause difficulties for some numerical algorithms operating upon the fitted

function. Numerical splicing/smoothing algorithms aimed at eliminating discontinuities in the
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value and/or derivatives of a piecewise fit are not, in general, computationally insignificant.
Problems associated with piecewise splicing of fits may also be obviated by obtaining an accurate
enough fit, such that the error is on the order of magnitude of the limiting machine precision.
This alternative, however, requires the use of additional fitting parameters to acquire the
improved precision. Thus, regardless of approach, the desire to eliminate discontinuities in the
function and its derivatives, between piecewise splices, requires extra computational effort. One
final benefit to be had by avoiding the use of piecewise fits is the concomitant avoidance of
conditional (i.e., IF...THEN) programming statements in the coding of the routine. The use of -
conditional statements can preclude maximum computing efficiency on certain parallel computing

architectures.

Therefore, an alternate method is devised to approximate the exponential integral. A
compact, analytical fit that strives to predict the exponential integral to within a small percentage
of the actual value is sought. Ideally, the fit will remain accurate over all x, which will

distinguish it from other, piecewise, fits to the exponential integral.
2. The Approach

Since large values of x (x> 1) are the root of the current difficulty, this paper first focuses
on that region of the domain. Fitting any function accurately over the expansive domain x> 1
can be a daunting task. Even more so is the family of exponential integrals, eqn (1), which
experience drastic order of magnitude changes over that domain. To map the infinite into an
acceptably small, finite domain, transform the exponential integrals by way of the substitution
w=1/x (and transform the dummy variable, ¢, by way of ¥ =1/f). In this manner, the domain
x> 1 maps into the transformed domain 0 <w < 1, which is much more amenable to study. (Of
course, the downside is that values of x< 1 transform into the expansive domain w>1.) With

this simple substitution, the family of exponential integrals given by eqn (1) becomes

Ew=1%) = — [ur? e du . ™
wh g



Eqn (7) is then numerically integrated with respect to u for several representative values
for n (using Simpson’s Rule, with a step size of 1x1077 across the small-w domain), so as to
obtain a better understanding of the function. At small w (less than 0.0016, corresponding to
x=625), the ability of double precision (64 computer bits) to represent the tiny exponentials is
at its limit. For the three logarithmic cycles of w between 0.001 and 1, the exponential integral
E, varies by more than 300 orders of magnitude. Figure 1 shows several of these integrals over
40 of those orders of magnitude. Clearly, a transformation is required to collapse this vast

change in scale into something less dramatic. Such a transformation is found, when it is realized

that

. E
lim " =1 . (8)

w0 W e—l/w

Therefore, E, is transformed by way of the relation F,=E,/(w e ). In this way, F,
equals unity, when evaluated at w=0. Figure 2 depicts F, F,, and F, over several subdomains
of w. Itis observed from Figure 2a that, even though the values of E, cannot be evaluated using
double-precision arithmetic for w much below w = 0.0016, the transformation of E, into F, allows
for an excellent interpolation between the (w, F,) point (0,1) and small values of w since, unlike
E,, the behavior of F, at low w is nearly linear. As observed from Figure 2a, the initial slopes
of F,, F,, and F, appear to be —1, -2, and -3, respectively. To obtain these values exactly, let

F,=1-a,w+b,w*—... for infinitesimal w. Substituting the definition for F, (and with the use

of eqn [7]) results in

wlE = J-u"’ze'”“ du =wre™ (1-aw+bw?-..) . 9
0

By taking the derivative of this expression and collecting terms, a, must equal n, and b, must

equal n(n+1) in the small-w limit. These derived values for a, confirm the slope observations

from Figure 2a.

Rather than attempting a fit to the F, directly, however, the quantity F,-w is first plotted

in Figure 3. At large w, the curve appears to be logarithmic in nature, in comparison to the curve
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Figure 1. The exponential integrals E, and E; expressed in terms of w = 1/x, in relation to
the decaying exponential function.
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Figure 2. The functions F,, F,, and F;, (a) in the small-w limit, corresponding to x — <o;
(b) over the domain 0 <w <1, corresponding to x> 1; (c) over six logarithmic
cycles of w, corresponding to 0.001 < x < 1000.
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Figure 2. The functions F,, F,, and F,, (a) in the small-w limit, corresponding to x — ;
(b) over the domain 0 <w <1, corresponding to x> 1; (c) over six logarithmic
cycles of w, corresponding to 0.001 < x < 1000.
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Figure 3. A comparison of F, -w to In(1+0.562w), for larger w, above unity.




In(1 +0.562 w), shown in the same figure. Large values of w correspond to small x, where

eqn (5) is more easily evaluated. From the nature of eqn (5) as x approaches zero, it is seen that

lim E,(x) = -y-In(x) . (10)

x =50

From eqn (10), by transforming x to 1/w and E, to (F,*w)/e’"", a comparison of the term F,*w

to the functional form In(1+kw), as w — oo, reveals that k£ must take on the exact value

e7=0.5615...

However, for small w, the form In(1+e™w) is not appropriate. Rather, recall that, for
small w, the functions F, are shown to be of the limiting form 1 —nw + n(n+1)w?. Thus, for the
case of n=1 (the lowest-order exponential integral), F,-w must follow as w —w?+ 2w’ for small
w. A Taylor-series expansion of In(1+¢™w) about w =0, by contrast, is given (to two terms) by
the form e¥w —1/2:¢®w? As compared to w —w?+ 2w, the Taylor expansion is observed to
have the wrong initial slope (¢, instead of 1.0) and curvature (—e™>, as compared with the proper
value of -2) in the low-w limit. To remedy the slope and curvature mismatch, compare in
Figure 4 the function F,-w to a different logarithmic form (one possessing the proper initial
slope of 1 and curvature of —2)—namely, the function In[1+In(1+w)], which provides an excellent

low-w approximation to F,;-w by matching the value, slope, and curvature of F;-w.

_ Therefore, the limiting behavior of F,*w is known for both w — 0 as well as w — . As
such, the fitting strategy for F,w is now apparent: a form which follows In[1+In(1+w)] for low
w and transitions to In(1+e™w) for larger w. There are a number of ways in which this transition
might be accomplished, but, after some study, the following explicit form that exhibits the

sought-after characteristics has been chosen:

Frw=In{l+w-[w-In(1+w)]-fw)} , (11)

10




Figure 4. A comparison of F, -w to In{1+In(1+w)] and In(1+0.562w), for small w, below

unity.

YV
/

t/l

In[1+in(t+w)] -
f/,
/
F:1\/'/
I/’
/

N\
In(1+0.562w)

P

]

11

1.0




where f(w) is the function to parameterize and fit. One alternative strategy, that of having two
fitting functions (f; to transition down the low-w form and f, to activate the large-w solution),
is discarded for two reasons: (1) more fitting parameters are required for two transition
functions, as compared to one; and (2) fi-In(1+w) and f;-e™¥w interact in a nonlinear way,
making it difficult to avoid excessive slope and curvature oscillations in the transition region.
By contrast, the form selected in eqn (11) has three primary virtues above many other fitting
forms: (1) it requires only a single function to be fit, thereby minimizing the number of fitting
parameters; (2) as w increases, the logarithmic term in brackets naturally exhibits diminished
importance with respect to the linear term, thereby providing an automatically smooth transition
to the high-w solution; and (3) because at small w the logarithmic term behaves like w and
monotonically diverges from it thereafter, the value and every higher derivative of the quantity
[w — In(14+w)] exhibit smooth, monotonic behavior. Such monotonicity helps to ensure that the

behavior of fis also smooth and monotonic.

Recalling that F,-w is identical to E,/e"”, the first three exponential integrals may be

given, in terms of f(w), as

E, = je'”" du=~e™ -{l+w-[w-In(l+w]fw)} , (122)
0 u
E, = — [eau = e (w-{lew-[w-l@+w]-fn}) ,  (12b)
w S w

and

E =L ju edy = C o (w? - w o+ {1 rw-[w-In(l+w]Fw) Y . (120)
0

12




Higher-order exponential integrals may be determined, after a similar fashion, with the use of

eqn (4), expressed in w.
3. The Fit(s)

From eqn (11), f(0) = 1, in order to have the proper low-w behavior. At larger w, f should
approach the constant value of (1 -¢™)=0.4385... Furthermore, recall that for infinitesimal w,
F,-w follows the form w —w? + 2w, And though the low-w stencil, In[1+In(1+w)], matches the
limiting value, slope, and curvature of F,-w, the initial slope of f may be further restricted to
force a match to the third derivative of F,-w, as well. By equating this limiting cubic form to
the right side of eqn (11), the third derivative may be taken (tedious though it may be) to show
that 12 =-3f/+7, or

£l =-53 . (13)

The numerically integrated values for E, are used to generate explicit values for f, as shown in
Figure 5. To achieve a fit to this data, an appropriate functional form is needed to approximate
the explicit data shown in Figure 5. Two forms are now presented. The simplest, with two free
parameters, is

_ (I1+Aw+(1 -e™)Bw? ' 14
(1+@A+53)w+ Bw?)

Jw)

This function begins at unity, for w=0, has an initial slope of —5/3, and asymptotes to (1 —e™)
for large w, thus satisfying both the small- and large-w asymptotic requirements. The value of

B relative to A helps to determine the magnitude of the transition region.

The quality of this fit may be compared to the numerically integrated values and be

expressed as a maximum percent-deviation from the integrated value, as in
% Error = 100 x max[(E ), - E ]/ E, . (15)

13



1.0
|
\
8 y
- \‘
S \\
\\
\\
6 A
\\
\\\‘
IR N —
4 - .
0 1 2 3 4 5
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and the asymptote, f=(1-¢™"), corresponding to large w.
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Over the complete domain of the function, the resulting fit (attempting to minimize the

percent error in E,) to this two-parameter version of f is given as

— ¥y 2
fowy = 1874w+ (A -eT)108w” o\ 0 (£, within +0.067%). (16a)

1 +(5.874+5/3)w + 10.8w?

Restricting the fit to the subdomain 0 <w<1 (x> 1), as do many of the existing fits, results in

- p= . 2
fowy = L r43llw (1 -e™)6851w” g o1 (£ within £0.002%). (16b)

1+(4311+5/3)w + 6.851w?

A four-parameter form is also developed for f, given by

- N 2
Fow) = 1+ 4.054w + (1-e7)-6.207w O<w<wo

1 +(4.054+5/3)w +[1 + 0.5032w/(29.3+w)? ] -6.207w*

(E, within £0.00511%). (16c)
Expressing eqn (12a) in terms of x, E, may be given as
E () = J'e_t-_ dt=e* In{l+1x-[l/x-Im(1+1/x)] f(x)} , a7n

with f(x) given as

x?+5.874x + (1 -e77)-10.8

, 0<x<oo (E, within 20.067%), (18a)
x?+(5.874+5/3)x + 10.8

fx) =

15




2 —_— ™ .
foy = X r431x+(1-e™) 6851 1y, o (£, within +0.002%),  (18b)
X2+ (4311-53)x + 6851

or
o) = x2+  4.054x + (1 -e7)-6.207 O<x<oo
x2 + (4054 +5/3)x + [1 +0.5032x/(1+29.3x)*]-6.207
(E, within +0.00511%). (18¢)

Expressed in FORTRAN, this fit to E; may be coded in a single statement as

El = EXP(-X) * LOG(l. + 1./X - (1./X - LOG(l. + 1./X))
& *(X**2 + 4.054*X + 2.72202 )
& /(X**2 +5.72067*X +(1. + 0.5032*X/(1. + 29.3*X)**2)*6.207) )

To reiterate, this fit is valid over the real domain of E,, x>0, to within an error of £0.00511%.
There is no need for conditional branching based on the value of x. Indeed, there is hardly a

need to make the calculation external to the calling routine.
4. Quality of Fit

The accuracy for each of the fits to f is expressed in eqn (18) in terms of the maximum
percent deviation of the fitted E, from its numerically integrated value. Because of the manner
in which E, terms interact with higher-order exponential integrals [see eqn(4)], the error
produced when using the fitted f to compute these higher-order integrals will differ from that of
E,. Using the four-parameter eqn (18c) to conduct the comparison of E,, E,, and E; (i.e.,
eqns [12]) with the integrated data, Figure 6a reveals errors never exceeding 10.15%. Recall that
any one of these exponential integrals varies by more than 300 orders of magnitude over the
domain shown (0.001 <w < 1000) in Figure 6a. Figure 6b shows the same data (in linear scale)
but focuses upon the domain 0 <w< 1. Over this domain, corresponding to x> 1, the error is

strictly less than +0.005% for E,, +0.029% for E,, and £0.15% for E,.

16
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Figure 6. The percent-error of the compact analytical fit, when used to evaluate E, E,, and
E,, (a) shown over six logarithmic cycles of w; (b) over the domain 0 <w<1.



By contrast, a four-parameter fit to F; published by the (former) U.S. National Bureau of
Standards (NBS) [5] (now the National Institute of Standards and Technology), given by

F o X%+ 2334733x +0.250621 19)
b X2+ 3330657x + 1.681534

is valid only for the limited domain of w<1 (x>1) and has an absolute error band in F, of
+0.00005 (expressed in terms of percent error in E|, it is %0.0051%). The four-parameter
eqn (18c) betters this number with £0.005%, over the domain x> 1, as shown in Figure 7. Even
the two-parameter eqn (18b), when restricted to the limited domain of w<1 (x> 1), betters the
NBS four-parameter fit by a factor of 2.5. To achieve a better accuracy than the current fit, the

National Bureau of Standards specifies an eight-parameter fit in double precision which, again,

is valid over only a limited subdomain of the function. At the other end of the functional domain
(small x), compare the current four-parameter fit to eqn (5) when truncated to, for example, the

cubic term. In this case, the current fit is more accurate for x> 0.2 (w<5).

Furthermore, because the NBS fit fails to achieve the proper limiting derivatives as w
approaches zero (x — ), the use of the NBS fit to acquire the higher-order exponential integrals,
by way of eqn (4) results in larger errors as w — 0, whereas errors with the current fit approach
zero as w—0. For example, E, has a limiting error in excess of —0.4% with the NBS fit
(compared with a maximum error of £0.029% with the current fit), and E; has a limiting error

in excess of +120% (compared with a maximum error of £0.15% for the current fit).

A comparison of the current fit to those published by Cody and Thatcher [7] is completely
similar to that of the NBS, both in trend and in order of magnitude. To exceed the accuracy of
the current fit, six parameters are required for the subdomain 0 <x< 1, six additional parameters
for the domain 1 <x<4, and 4 more parameters for the domain x> 4. Furthermore, each of those
sixteen parameters is specified to seven or more digits of precision. The behavior when using
the fit of Cody and Thatcher to compute higher-order E, is also similar to that of the NBS;

namely, errors become much larger, more quickly, because of the failure of Cody and Thatcher’s

18
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fit to asymptote to the proper limiting derivatives. This particular shortcoming of their fit can
be circumvented, but only through the use of significantly greater number of parameters in the

fit to the x =4 subdomain.

5. Fitting Strategies

A few words may be in order here, on the formulation of fitting strategies for functions
in general. With enough parameters, any function may be fit to a high degree of accuracy. The
goal, however, is to achieve this fit, while minimizing the number of parameters and
computational expense while, at the same time, maximizing the accuracy and the domain of
applicability. Depending on how little or great an effort is warranted for the problem at hand,
some or all of the following suggestions may be of utility in formulating an intelligent fit to a

specified function, G, numerical values for which are known only in tabular form:

1) Compress the function’s domain and range of interest to a manageable size (i.e., analyze and

fit a transformed function, H, if easier to digest than the original function, G).

2) Obtain limiting behaviors of the original (G) or transformed (H) function, if possible. This
includes not only functional values, but slopes and higher derivatives. Such limits are needed

if one wishes the fit to accurately converge in the limits of the domain.

3) Convert limiting behaviors into functional stencils (e.8., Ao Prarge.rs Sasymprorer €2C-)- Often,

the more derivatives that the stencil can match, the easier it will be to subsequently fit the

transition function.

4) Develop a functional form for G or, if easier, for H (in terms of, hopefully, a single transition
function, f) that is able to effectively transition between the limiting behaviors of the function.
At this point, the unknowns are not individual fitted parameters, but instead the transition

function(s). A simple example would be H = f-h,, ;.. + (1-f)hy,,,.,. From this developed form,
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quite a bit should be known about the general behavior of the transition function, f. For example,

it might be known that £(0) is 1, with an initial slope of -1, and which asymptotes at large x to 0.

5) Explicitly solve for tabulated values of the transition function, using the numerically integrated
or tabulated values for G or H, and the calculated values for the stencils, 4,,,,,, efc. Using the
above example, f = (5,40, = H) (Riprge.x = Bomanx)- The goodness of a particular functional form for
G or H, in terms of f, may be assessed by observing how smoothly the calculated values of the
f function behave. For example, it is generally easier to fit a monotonic transition function than
one which oscillates. If the computed values for f don’t seem to follow a desired (easily fitted)

form, return to step 4 and reformulate a new functional form.

6) Based on observations of the behavior of the transition function, f, specify a specific form for
the transition function in terms of parameters to be fit. For example, f=A/x+ Bx*. The observed
behavior of the tabulated values for f should help in the specification of a good parameterized

form.

7) Fit the parameters associated with the transition function. Ample numbers of coded programs
exist to assist in this task, or else a simple (if inefficient) fitting routine may be written to

minimize a specified error function (e.g., least squares).

8) Once the fitted parameters are obtained, evaluate the accuracy of the fit. If quality of fitted

results are below expectations, return to step 6 or 4 to reformulate new trial functions.

In the current work of fitting E|, step 1 is accomplished by transforming both the domain
(from x to w in eqn [7]) and the range (from E, to F, and eventually to F,"w). In step 2, eqn (9)
is employed to obtain the slope and derivatives of F for infinitesimal w and eqn (10) is used to
express the analytically known behavior of E, for small x in terms of large w. Step 3 is
accomplished by formulating the stencils In[1+In(14+w)] for small w and In(1+e™w) for large w.
Eqn (11) constitutes the functional form developed, as part of step 4. The transition function, f,
is explicitly calculated, per step 5, and plotted in Figure 5 to reveal its desirable (easily fitted)
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characteristics. The transition function is specified, in terms of parameters, in eqn (14), in
accordance with step 6. Using a computational routine, the parameters to the transition function

are fitted, as given in eqns (16), per step 7. The accuracy is evaluated and found acceptable, thus

completing step 8 and the process.

This methodology may also be used to generate fits to experimental data, if something
is analytically known about the physical process which created the data. In contrast to the
methodology described here, polynomial fits are very popular (especially in the experimental
community) because of the trivial cost in obtaining the fit. Unfortunately, polynomial fits are
virtually guaranteed to offer zero extrapolative capacity beyond the domain over which they were
fit. Furthermore, they offer zero insight into the physical behavior of the unknown function or
data, and generally require many more parameters to achieve the same level of accuracy as an
intelligent fit, as described here. And without some forethought, functions such as the
exponential integrals are very costly to fit directly with polynomials because of their exponential
nature [e.g., a truncated eqn (5) is essentially a very costly polynomial fit to the exponential

integral].

In contrast to the polynomial fit, the process described here offers a logical methodology
for generating fits to difficult functions or data, such that good results may be obtained with
fewer parameters and at a reasonable cost. For an oft-used function, the extra effort required to
compose an intelligent fit might very well be justified. A quote attributed to Cauchy, the 19th
century mathematician, contends that ‘‘Give me five free parameters and I will give you the
equations for an elephant, but give me a sixth free parameter and I will make the elephant wag

its tail.”” Such versatility with so few parameters is surely possible only by way of an intelligent

fit.

6. Summary

A compact (not piecewise), analytical fit has been developed for the class of integrals

known as exponential integrals. The fit has been shown to match the numerically integrated
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exponential integral, E,, to within an error of 0.0052%, over the complete domain of the function.
Related integrals, E, and E,, were computed to within 0.029% and 0.15%, respectively, when
using the current E, fit as part of the general E, solution. Achieving such a feat is complicated
by the fact that the value of these integrals, being exponential in nature, can change several-

hundred orders of magnitude over a reasonably small section of the integral’s domain.

By avoiding a series of piecewise fits to describe the complete domain of the function,
it is guaranteed that the current fit is continuous in value, slope, and all higher derivatives. By
contrast, a series of piecewise fits must either contend with discontinuous values, slopes, and/or
higher derivatives, or else employ a smoothing algorithm to splice the piecewise fits. Such
smoothing algorithms could be more computationally expensive than the fit itself and, therefore,
need to be considered as part of the computational burden. Additionally, the avoidance of
piecewise fitting permits the coding of the fit into a programming language without the use of
conditional (i.e., IF...THEN) statements. For some parallel-computing architectures, the use of

conditional statements (required of piecewise fits) precludes maximum computing efficiency.

The ability to achieve a good fit, encompassing the complete domain of the function, with
the use of only four parameters, stems completely from the fact that so much could be
analytically deduced about the behavior of the function in large-x and small-x limits, prior to
actually composing the form of the fit. In the small-x limit, the exact limiting form of the result
is analytically known. In the large-x limit, a functional stencil that matches value, slope, and
curvature of the actual exponential integral is employed. Furthermore, this stencil for the large-x
(small-w) limit, given by In[1+In(1+w)], does not numerically explode as w increases but, instead,
smoothly fades as a diminishing percentage of the large-w (small-x) solution. In this manner,
special accommodations (such as piecewise fitting of the solution) do not have to be made in

order to transition from the small-w to large-w solution.
The accuracy of the fit exceeds a comparable (i.e., four-parameter) fit published by the

(former) U.S. National Bureau of Standards [5]. Furthermore, the NBS fit is accurate over only

a specified subset of the functional domain. If the current fit is restricted to the same functional
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subdomain as the NBS fit, only two parameters are required to significantly exceed the accuracy
of the NBS fit. And because the NBS fit fails to properly match the limiting slope and higher-
order derivatives of the exponential integral, E,, the use of the NBS fit to evaluate the higher-
order E, produces a greater limiting error than the current fit: over 120% in the case of E,, as
compared with 0.15% by using the current fit. Similar results arise when comparing the current
fit to the four-parameter fits of Cody and Thatcher [7], which are more recent than the NBS fits.
However, if the number of parameters and piecewise nature of the fits are not issues, Cody and
Thatcher still provide the most accurate of all fits. To achieve errors on the order of one part

in 10%, though, a total of 52 high-precision fitting parameters are required on their part.

The methodology used to generate the current fit was summarized in a loosely codified
form. This methodology can be of assistance in generating fits to other difficult functions or
even experimental data, if something is analytically known about the physical processes that

created the data.
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COLLEGE PARK MD 20742

UNIVERSITY OF PENNSYLVANIA
ATTN P A HEINEY

DEPT OF PHYSICS & ASTRONOMY
209 SOUTH 33RD ST
PHILADELPHIA PA 19104

UNIVERSITY OF PUERTO RICO
DEPT CHEMICAL ENGINEERING
ATTN L A ESTEVEZ
MAYAGUEZ PR 00681-5000

UNIVERSITY OF TEXAS

DEPT OF MECHANICAL ENGINEERING
ATTN ERIC P FAHRENTHOLD

AUSTIN TX 78712

VIRGINIA POLYTECHNIC INSTITUTE
COLLEGE OF ENGINEERING

ATTN R BATRA

BLACKSBURG VA 24061-0219

AEROJET

ATTN J CARLEONE

S KEY

PO BOX 13222
SACRAMENTO CA 95813-6000

AEROJET ORDNANCE
ATTN P WOLF

G PADGETT

1100 BULLOCH BLVD
SOCORRO NM 87801

34
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ALLIANT TECHSYSTEMS INC
ATTN R STRYK

G R JOHNSON MN11-1614

600 SECOND ST NE

HOPKINS MN 55343

MARVIN L ALME
2180 LOMA LINDA DR
LOS ALAMOS NM 87544-2769

APPLIED RESEARCH ASSOC INC
ATTN JEROME D YATTEAU

5941 S MIDDLEFIELD RD SUITE 100
LITTLETON CO 80123

APPLIED RESEARCH ASSOC INC
ATTN DENNIS GRADY

FRANK MAESTAS

SUITE A220

4300 SAN MATEO BLVD NE
ALBUQUERQUE NM 87110

ATA ASSOCIATES

ATTN W ISBELL

PO BOX 6570

SANTA BARBARA CA 93111

BATTELLE

ATTN ROBER M DUGAS

7501 S MEMORIAL PKWY SUITE 101
HUNTSVILLE AL 35802-2258

BOEING AEROSPACE CO

SHOCK PHYSICS & APPLIED MATH
ENGINEERING TECHNOLOGY
ATTN R HELZER

T MURRAY

J SHRADER

PO BOX 3999 -

SEATTLE WA 98124

BOEING HOUSTON SPACE STN
ATTN RUSSELL F GRAVES
BOX 58747

HOUSTON TX 77258

BRIGS CO

ATTN JOSEPH E BACKOFEN
2668 PETERSBOROUGH ST
HERNDON VA 20171-2443
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1

CALIFORNIA RSCH & TECHNOLOGY
ATTN M MAJERUS

. PO BOX 2229

PRINCETON NJ 08543

CENTURY DYNAMICS INC

ATTN N BIRNBAUM

2333 SAN RAMON VALLEY BLVD
SAN RAMON CA 94583-1613

COMPUTATIONAL MECHANICS
CONSULTANTS

ATTN J A ZUKAS

PO BOX 11314

BALTIMORE MD 21239-0314

CYPRESS INTERNATIONAL
ATTN A CAPONECCHI

1201 E ABINGDON DR
ALEXANDRIA VA 22314

DEFENSE TECHNOLOGY INTL. INC
ATTN D E AYER

THE STARK HOUSE

22 CONCORD ST

NASHUA NH 03060

DESKIN RESEARCH GROUP INC
ATTN EDWARD COLLINS

2270 AGNEW RD

SANTA CLARA CA 95054

DOW CHEMICAL INC
ORDNANCE SYSTEMS
ATTN C HANEY

A HART

B RAFANIELLO

800 BUILDING
MIDLAND MI 48667

G E DUVALL
5814 NE 82ND COURT
VANCOUVER WA 98662-5944

DYNA EAST CORP

ATTN P C CHOU

R CICCARELLI

W FLIS

3620 HORIZON DRIVE
KING OF PRUSSIA PA 19406
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3

DYNASEN

ATTN JACQUES CHAREST
MICHAEL CHAREST
MARTIN LILLY

20 ARNOLD PL

GOLETA CA 93117

R J EICHELBERGER
409 W CATHERINE ST
BEL AIR MD 21014-3613

ELORET INSTITUTE

ATTN DAVID W BOGDANOFF MS 230 2
NASA AMES RESEARCH CENTER
MOFFETT FIELD CA 94035

ENIG ASSOCIATES INC

ATIN J ENIG

D J PASTINE

M COWPERTHWAITE

SUITE 500

11120 NEW HAMPSHIRE AVE
SILVER SPRING MD 20904-2633

EXPLOSIVE TECHNOLOGY
ATTIN M L KNAEBEL

PO BOX KK

FAIRFIELD CA 94533

GB TECH LOCKHEED

ATIN JAY LAUGHMAN

2200 SPACE PARK SUITE 400
HOUSTON TX 77258

GB TECH LOCKHEED

ATTN LUCILLE BORREGO C23C
JOE FALCON JR C23C

2400 NASA ROAD 1

HOUSTON TX 77058

GDLS

38500 MOUND RD

ATIN W BURKE MZ436-21-24
G CAMPBELL MZ436-30-44

D DEBUSSCHER MZ436-20-29
J ERIDON MZ436-21-24

W HERMAN MZ 435-01-24

S PENTESCU MZ436-21-24
STERLING HTS MI 48310-3200
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2

GENERAL RESEARCH CORP
ATTN A CHARTERS

T MENNA

PO BOX 6770

SANTA BARBARA CA 93160-6770

GRC INTERNATIONAL

ATTN TIMOTHY M CUNNINGHAM
5383 HOLLISTER AVE

SANTA BARBARA CA 93111

INST OF ADVANCED TECHNOLOGY
UNIVERSITY OF TX AUSTIN
ATTN S J BLESS

J CAZAMIAS

J DAVIS

H D FAIR

T M KIEHNE

D LITTLEFIELD

M NORMANDIA

4030-2 W BRAKER LN
AUSTIN TX 78759

INTERNATIONAL RESEARCH ASSOC
ATTN D L ORPHAL

4450 BLACK AVE

PLEASANTON CA 94566

INTERPLAY

ATTIN F E WALKER
18 SHADOW OAK RD
DANVILLE CA 94526

ITT SCIENCES AND SYSTEMS
ATTN J WILBECK

600 BLVD. SOUTH, SUITE 208
HUNTSVILLE AL 35802

R JAMESON
624 ROWE DR
ABERDEEN MD 21001

KAMAN SCIENCES CORP

ATTN DENNIS L JONES

2560 HUNTINGTON AVE SUITE 200
ALEXANDRIA VA 22303
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7

KAMAN SCIENCES CORP
ATTN J ELDER
RICHARD P HENDERSON
DAVID A PYLES

FRANK R SAVAGE
JAMES A SUMMERS
TIMOTHY W MOORE
THY YEM

600 BLVD S SUITE 208
HUNTSVILLE AL 35802

KAMAN SCIENCES CORP
ATTN SHELDON JONES

GARY L PADEREWSKI
ROBERT G PONZINI

1500 GRDN OF THE GODS RD
COLORADO SPRINGS CO 80907

KAMAN SCIENCES CORP

ATTN NASIT ARI

STEVE R DIEHL

WILLIAM DOANE

VERNON M SMITH

PO BOX 7463

COLORADO SPRINGS CO 80933-7463

D R KENNEDY & ASSOC INC
ATTN D KENNEDY

PO BOX 4003

MOUNTAIN VIEW CA 94040

KERLEY PUBLISHING SERVICES
ATTN G I KERLEY

PO BOX 13835

ALBUQUERQUE NM 87192-3835

KTECH CORPORATION
ATTN FRANK W DAVIES
LARRY M LEE

901 PENNSYLVANIA NE
ALBUQUERQUE NM 87110

LIVERMORE SOFTWARE TECH CORP
ATTN J O HALLQUIST
2876 WAVERLY WAY
LIVERMORE CA 94550
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1

LOCKHEED MARTIN MISSLE & SPACE
ATTN WILLIAM R EBERLE

PO BOX 070017

HUNTSVILLE AL 35807

LOCKHEED MARTIN MISSILE & SPACE
ATTN M A LEVIN ORG 81 06 BLDG 598
M R MCHENRY

T A NGO ORG 81 10 BLDG 157

111 LOCKHEED WAY

SUNNYVALE CA 94088

LOCKHEED MISSILE & SPACE CO
ATTN JOHN R ANDERSON
WILLIAM C KNUDSON

S KUSUMI 0 81 11 BLDG 157

J PHILLIPS 0 54 50

PO BOX 3504

SUNNYVALE CA 94088

LOCKHEED MISSILE & SPACE CO
ATTN R HOFFMAN

SANTA CRUZ FACILITY

EMPIRE GRADE RD

SANTA CRUZ CA 95060

LOCKHEED NASA JSC
SPACE SCIENCE BRANCH
ATTN JAMES HYDE

BOX 58561 MC B22
HOUSTON TX 77258

MCDONNELL DOUGLAS
ASTRONAUTICS CO

ATTN B L COOPER

5301 BOLSA AVE
HUNTINGTON BEACH CA 92647

ORLANDO TECHNOLOGY INC
ATTN DANIEL A MATUSKA
MICHAEL GUNGER

PO BOX 855

SHALIMAR FL 32579-0855

PHYSICAL SCIENCES INC
ATTN PETER NEBOLSINE

20 NEW ENGLAND BUS CTR
ANDOVER MA 01810

37
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3

PHYSICS INTERNATIONAL
ATTN R FUNSTON

G FRAZIER

L GARNETT

PO BOX 5010

SAN LEANDRO CA 94577

PRC INC

ATTN J ADAMS

5166 POTOMAC DR #103
KING GEORGE VA 22485-5824

RAYTHEON ELECTRONIC SYSTEMS
ATTN R KARPP

50 APPLE HILL DRIVE
TEWKSBURY MA 01876

ROCKWELL INTERNATIONAL
ROCKETDYNE DIVISION
ATTN H LEIFER

16557 PARK LN CIRCLE

LOS ANGELES CA 90049

ROCKWELL MISSILE SYS DIV
ATTN T NEUHART

1800 SATELLITE BLVD
DULUTH GA 30136

SAIC

ATTN MICHAEL W MCKAY
10260 CAMPUS POINT DR
SAN DIEGO CA 92121

SHOCK TRANSIENTS INC
ATTN DAVID DAVISON
BOX 5357

HOPKINS MN 55343

SIMULATION & ENG CO INC
ATTN ELSA 1 MULLINS
STEVEN E MULLINS

8840 HWY 20 SUITE 200 N
MADISON AL 35758

SOUTHERN RESEARCH INSTITUTE
ATTN LINDSEY A DECKARD
DONALD P SEGERS

PO BOX 55305

BIRMINGHAM AL 35255-5305
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5

SRI INTERNATIONAL
ATTN JAMES D COLTON
D CURRAN

R KLOOP

R L SEAMAN

D A SHOCKEY

333 RAVENSWOOD AVE
MENLO PARK CA 94025

TELEDYNE BROWN ENGR
ATTN JIM W BOOTH
MARTIN B RICHARDSON
PO BOX 070007 MS 50
HUNTSVILLE AL 35807-7007

ZERNOW TECHNICAL SVCS INC
ATTN LOUIS ZERNOW

425 W BONITA AVE SUITE 208
SAN DIMAS CA 91773

SUNY STONEYBROOK
DEPT APPL. MATH & STAT.
ATTN J GLIMM
STONEYBROOK NY 11794

ABERDEEN PROVING GROUND

DIR, USARL
ATTN: AMSRL-WM, I MAY
AMSRL-WM-BC, A ZIELINSKI
AMSRL-WM-BD,
R PESCE-RODRIGUEZ
A KOTLAR
AMSRL-WM-BE, S HOWARD
AMSRL-WM-MB, G GAZONAS
AMSRL-WM-MC, ] M WELLS
AMSRL-WM-T,
W F MORRISON
T W WRIGHT

38

NO. OF

COPIES ORGANIZATION

43

DIR, USARL
ATTN: AMSRL-WM-TA,

W GILLICH

S BILYK

M BURKINS

W BRUCHEY
J DEHN

G FILBEY

W A GOOCH
H W MEYER
E J RAPACKI
J RUNYEON

AMSRL-WM-TB,

R FREY

P BAKER

R LOTTERO

J STARKENBERG

AMSRL-WM-TC,

W S DE ROSSET
T W BJERKE
R COATES

F GRACE

K KIMSEY

M LAMPSON
D SCHEFFLER
S SCHRAML
G SILSBY

B SORENSEN
R SUMMERS
W WALTERS

AMSRL-WM-TD,

S CHOU

A M DIETRICH

J M BOTELER

D DANDEKAR

K FRANK

M RAFTENBERG

A RAJENDRAN

M SCHEIDLER

S SCHOENFELD

S SEGLETES (5 CP)
T WEERASOORIYA

AMSRL-WM-WD,

J POWELL
A PRAKASH
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AERONAUTICAL & MARITIME
RESEARCH LABORATORY
ATTN N BURMAN

R WOODWARD

S CIMPOERU

D PAUL

PO BOX 4331

MELBOURNE VIC 3001
AUSTRALIA

ABTEILUNG FUER PHYSIKALISCHE
CHEMIE

MONTANUNIVERSITAET

ATTN E KOENIGSBERGER

A 8700 LEOBEN

AUSTRIA

PRBS A

ATTN M VANSNICK

AVENUE DE TERVUEREN 168 BTE 7
BRUSSELS B 1150

BELGIUM

ROYAL MILITARY ACADEMY
ATTN E CELENS
RENAISSANCE AVE 30

B1040 BRUSSELS

BELGIUM

BULGARIAN ACADEMY OF SCIENCES
SPACE RESEARCH INSTITUTE

ATTN VALENTIN GOSPODINOV

1000 SOFIA PO BOX 799

BULGARIA

CANADIAN ARSENALS LTD
ATTN P PELLETIER

5 MONTEE DES ARSENAUX
VILLIE DE GRADEUR PQ J5Z2
CANADA

DEFENCE RSCH ESTAB SUFFIELD
ATTN D MACKAY

RALSTON ALBERTA TOJ 2NO RALSTON
CANADA

39
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1

DEFENCE RSCH ESTAB SUFFIELD
ATTN CHRIS WEICKERT

BOX 4000 MEDICINE HAT
ALBERTA TIA 8K6

CANADA

DEFENCE RSCH ESTAB VALCARTIER
ARMAMENTS DIVISION

ATTN R DELAGRAVE

2459 PIE X1 BLVD N

PO BOX 8800

CORCELETTE QUEBEC GOA IR0
CANADA

UNIVERSITY OF GUELPH
PHYSICS DEPT

ATIN C G GRAY
GUELPH ONTARIO

N1G 2W1

CANADA

CEA

ATTN ROGER CHERET

CEDEX 15

313 33 RUE DE LA FEDERATION
PARIS 75752

FRANCE

CEA

CISI BRANCH

ATTN PATRICK DAVID
CENTRE DE SACLAY BP 28
GIF SUR YVETTE 91192
FRANCE

CEA/CESTA

ATTN ALAIN GEILLE
BOX 2 LE.BARP 33114
FRANCE

CENTRE D’ETUDES DE GRAMAT
ATTN SOLVE GERARD
CHRISTIAN LOUPIAS

PASCALE OUTREBON

J CAGNOUX

C GALLIC

J TRANCHET

GRAMAT 46500

FRANCE
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2

CENTRE D’ETUDES DE LIMEIL-VALENTON

ATTN CHRISTIAN AUSSOURD
JEAN-CLAUDE BOZIER
SAINT GEORGES CEDEX
VILLENEUVE 94195

FRANCE

CENTRE D’ETUDES DE VAUJOURS
ATTN PLOTARD JEAN-PAUL

ERIC BOTTET

TAT SIHN VONG

BOITE POSTALE NO 7

COUNTRY 77181

FRANCE

CENTRE DE RECHERCHES
ET D’ETUDES D’ARCUEIL
ATTN D BOUVART

C COTTENNOT

S JONNEAUX

H ORSINI

S SERROR

F TARDIVAL

16 BIS AVENUE PRIEUR DE
LA COTE D’OR

F94114 ARCUEIL CEDEX
FRANCE

DAT ETBS CETAM

ATTN CLAUDE ALTMAYER
ROUTE DE GUERRY BOURGES
18015

FRANCE

ETBS DSTI

ATTN P BARNIER
ROUTE DE GUERAY
BOITE POSTALE 712
18015 BOURGES CEDEX
FRANCE

FRENCH GERMAN RESEARCH INST
ATTN CHANTERET P-Y

CEDEX 12 RUE DE I'INDUSTRIE

BP 301

F68301 SAINT-LOUIS

FRANCE

COPIES ORGANIZATION

FRENCH GERMAN RESEARCH INST
ATTN HANS-JURGEN ERNST
FRANCIS JAMET

PASCALE LEHMANN

K HOOG

H LERR

CEDEX 5 5 RUE DU GENERAL
CASSAGNOU

SAINT LOUIS 68301

FRANCE

LABORATOIRE DE TECHNOLOGIE DES
SURFACES

ECOLE CENTRALE DE LYON

ATTN VINET P

BP 163

69131 ECULLY CEDEX

FRANCE

BATTELLE INGENIEUTECHNIK GMBH
ATIN W FUCHE

DUESSELDORFFER STR 9

ESCHBORN D 65760

GERMANY

CONDAT

ATTN J KIERMEIR
MAXIMILIANSTR 28

8069 SCHEYERN FERNHAG
GERMANY

DEUTSCHE AEROSPACE AG
ATTN MANFRED HELD
POSTFACH 13 40

D 86523 SCHROBENHAUSEN
GERMANY

DIEHL GBMH AND CO

ATTN M SCHILDKNECHT
FISCHBACHSTRASSE 16

D 90552 ROTBENBACH AD PEGNITZ
GERMANY
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4

ERNST MACH INSTITUT 3
ATTN VOLKER HOHLER

E SCHMOLINSKE

E SCHNEIDER

K THOMA

ECKERSTRASSE 4

D-7800 FREIBURG I BR 791 4

GERMANY

EUROPEAN SPACE OPERATIONS CENTRE

ATTN WALTER FLURY 1
ROBERT-BOSCH-STRASSE 5

64293 DARMSTADT

GERMANY

FRAUNHOFER INSTITUT FUER
KURZZEITDYNAMIK 2
ERNST MACH INSTITUT
ATTN H ROTHENHAEUSLER
H SENF
E STRASSBURGER
HAUPTSTRASSE 18
D79576 WEIL AM RHEIN .
GERMANY 1

FRENCH GERMAN RESEARCH INST

ATTN HARTMUTH F LEHR

ROLF HUNKLER

ERICH WOLLMANN

POSTFACH 1260 1
WEIL AM RHEIN D-79574

GERMANY

IABG

ATTN M BORRMANN 5
H G DORSCH

EINSTEINSTRASSE 20

D 8012 OTTOBRUN B MUENCHEN

GERMANY

INGENIEURBURO DEISENROTH
AUF DE HARDT 33 35

D5204 LOHMAR 1

GERMANY

41

TU CHEMNITZ-ZWICKAU

ATTN I FABER

L KRUEGER

LOTHAR MEYER

FAKULTAET FUER MASCHINENBAU U.
VERFAHRENSTECHNIK

SCHEFFELSTRASSE 110

09120 CHEMNITZ

GERMANY

TU MUNCHEN
ATTN E IGENBERGS
ARCISSTRASSE 21
8000 MUNCHEN 2
GERMANY

UNIVERSITAT PADERBORN
FACHBEREICH PHYSIK
ATTN O SCHULTE

W B HOLZAPFEL

D 33095 PADERBORN
GERMANY

BHABHA ATOMIC RESEARCH CENTRE
HIGH PRESSURE PHYSICS DIVISION
ATTN N SURESH

TROMBAY BOMBAY 400 085

INDIA

NATIONAL GEOPHYSICAL RESEARCH INSTITUTE
ATTN G. PARTHASARATHY
HYDERABAD-500 007 (A. P.)

INDIA

RAFAEL BALLISTICS CENTER
ATTN EREZ DEKEL

YEHUDA PARTOM

G ROSENBERG

Z ROSENBERG

Y YESHURUN

PO BOX 2250

HAIFA 31021

ISRAEL

TECHNION INST OF TECH
FACULTY OF MECH ENGNG
ATTN SOL BODNER
TECHNION CITY

HAITFA 32000

ISRAEL
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1 IHI RESEARCH INSTITUTE
STRUCTURE & STRENGTH
ATTN: TADASHI SHIBUE
1-15, TOYOSU 3
KOTO, TOKYO 135
JAPAN

1 ESTEC CS
ATTN DOUGLAS CASWELL
BOX 200 NOORDWIK
2200 AG
NETHERLANDS

2  EUROPEAN SPACE AGENCY ESTEC
ATTN LUCY BERTHOUD
MICHEL LAMBERT
POSTBUS BOX 299 NOORDWIIK
NL2200 AG
NETHERLANDS

4  PRINS MAURITS LABORATORY
ATTN H J REITSMA
EDWARD VAN RIET
H PASMAN
R YSSELSTEIN
TNO BOX 45
RISWIIK 2280AA
NETHERLANDS

1 ROYAL NETHERLANDS ARMY
ATTN J HOENEVELD
V D BURCHLAAN 31
PO BOX 90822
2509 LS THE HAGUE
NETHERLANDS

4  HIGH ENERGY DENSITY RESEARCH CTR

ATTN VLADIMIR E FORTOV
GENADII I KANEL

V A SKVORTSOV

O YU VOIJOBIEV
IZHORSKAIJA STR 13/19
MOSCOW 127412

RUSSIAN REPUBLIC

1 INSTITUTE OF CHEMICAL PHYSICS
ATTN A YU DOLGOBORODOV
KOSYGIN ST 4 V 334
MOSCOW
RUSSIAN REPUBLIC

42
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3

INSTITUTE OF CHEMICAL PHYSICS
RUSSIAN ACADEMY OF SCIENCES
ATTN A M MOLODETS

S V RAZORENOV

A V UTKIN

142432 CHERNOGOLOVKA
MOSCOW REGION

RUSSIAN REPUBLIC

INSTITUTE OF MECH ENGINEERING PROBLEMS
ATTN V BULATOV

D INDEITSEV

Y MESCHERYAKOV

BOLSHOY, 61, V.O.

ST PETERSBURG 199178

RUSSIAN REPUBLIC

INSTITUTE OF MINEROLOGY & PETROGRAPHY
ATTN V A DREBUSHCHAK
UNIVERSITETSKI PROSPEKT, 3

630090 NOVOSIBIRSK

RUSSIAN REPUBLIC

IOFFE PHYSICO TECHNICAL INSTITUTE
DENSE PLASMA DYNAMICS
LABORATORY

ATTN EDWARD M DROBYSHEVSKI

A KOZHUSHKO

ST PETERSBURG 194021

RUSSIAN REPUBLIC

IPE RAS

ATTN A A BOGOMAZ
DVORTSOVAIA NAB 18
ST PETERSBURG
RUSSIAN REPUBLIC

LAVRENTYEV INST. HYDRODYNAMICS
ATTN LEV A MERZHIEVSKY

VICTOR V SILVESTROV

630090 NOVOSIBIRSK

RUSSIAN REPUBLIC

MOSCOW INST OF PHYSICS & TECH

ATTN S V UTYUZHNIKOV

DEPT OF COMPUTATIONAL
MATHEMATICS

DOLGOPRUDNY 1471700

RUSSIAN REPUBLIC
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1

RESEARCH INSTITUTE OF MECHANICS
NIZHNIY NOVGOROD STATE UNIVERSITY
ATIN A SADYRIN

P.R. GAYARINA 23 KORP 6

NIZHNIY NOVGOROD 603600

RUSSIAN REPUBLIC

RUSSIAN FEDERAL NUCLEAR CENTER
ATTN LEONID F GUDARENKO

MIRA AVE, 37

SAROV 607190

RUSSIAN REPUBLIC

SAMARA STATE AEROSPACE UNIV
ATIN L G LUKASHEV

SAMARA

RUSSIAN REPUBLIC

TOMSK BRANCH OF THE INSTITUTE
FOR STRUCTURAL MACROKINETICS
ATTN V GORELSKI

8 LENIN SQ GSP 18

TOMSK 634050

RUSSIAN REPUBLIC

UNIVERSIDAD DE CANTABRIA
FACULTAD DE CIENCIAS
DEPARTMENTO DE FISICA APLICADA
ATTN J AMOROS

AVDA DE LOS CASTROS S/N

39005 SANTANDER

SPAIN

DEPARTMENTO DE QUIMICA FISICA
FACULTAD DE CIENCIAS QUIMICAS
UNIVERSIDAD COMPLUTENSE DE
MADRID

ATIN V G BAONZA

M TARAVILLO

M CACERAS

J NUNEZ

28040 MADRID

SPAIN

43
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1

CARLOS III UNIV OF MADRID
ATTN C NAVARRO

ESCUELA POLITEENICA
SUPERIOR

C/. BUTARQUE 15

28911 LEGANES MADRID
SPAIN

UNIVERSIDAD DE OVIEDO
FACULTAD DE QUIMICA

DEPARTMENTO DE QUIMICA FISICA Y

ANALITICA

ATTN E FRANCISCO

AVENIDA JULIAN CLAVERIA S/N
33006 - OVIEDO

SPAIN

DYNAMEC RESEARCH AB
ATTN AKE PERSSON

P.0. BOX 201

S-151 23 SODERTALIE
SWEDEN

NATL DEFENCE RESEARCH EST
ATTN LARS HOLMBERG

ULF LINDEBERG

LARS GUNNAR OLSSON

L HOLMBERG

B JANZON

I MELLGARD

FOA BOX 551

TUMBA S-14725

SWEDEN

SWEDISH DEFENCE RSCH ESTAB
DIVISION OF MATERIALS

ATTN S J SAVAGE

J ERIKSON

STOCKHOLM S§-17290

SWEDEN

K&W THUN

ATTN W LANZ
ALLMENDSSTRASSE 86
CH-3602 THUN
SWITZERLAND




NO. OF

COPIES ORGANIZATION

2

AWE

ATTN MICHAEL GERMAN
WAYNE HARRISON
FOULNESS ESSEX SS3 9XE
UNITED KINGDOM

CENTURY DYNAMICS LTD
ATTN NIGEL FRANCIS
DYNAMICS HOUSE
HURST RD

HORSHAM

WEST SUSSEX RH12 2DT
UNITED KINGDOM

DERA

ATTN I CULLIS

FORT HALSTEAD
SEVENOAKS KENT TN14 7BJ
UNITED KINGDOM

DEFENCE RESEARCH AGENCY
ATTN W A J CARSON

I CROUCH

C FREW

T HAWKINS

B JAMES

B SHRUBSALL

CHOBHAM LANE CHERTSEY
SURREY KT16 OEE

UNITED KINGDOM

UK MINISTRY OF DEFENCE

ATTN GRAHAM J CAMBRAY
CBDE PORTON DOWN SALISBURY
WITTSHIRE SPR 0JQ

UNITED KINGDOM

K TSEMBELIS

SHOCK PHYSICS GROUP
CAVENDISH LABORATORY
PHYSICS & CHEMISTRY OF SOLIDS
UNIVERSITY OF CAMBRIDGE
CAMBRIDGE CB3 OHE -

UNITED KINGDOM
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2

UNIVERSITY OF KENT
PHYSICS LABORATORY
UNIT FOR SPACE SCIENCES
ATTN PHILIPPE GENTA

PAUL RATCLIFF
CANTERBURY KENT CT2 7NR
UNITED KINGDOM

INSTITUTE FOR PROBLEMS IN
MATERIALS STRENGTH

ATIN S FIRSTOV

B GALANOV

O GRIGORIEV

V KARTUZOV

V KOVTUN

Y MILMAN

V TREFILOV

3, KRHYZHANOVSKY STR

252142, KIEV-142

UKRAINE
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